Tardigrades — those microscopic, plump-bodied critters lovingly known as “moss piglets” — have been put through the ringer for science. The amazingly durable creatures have been shot out of guns, bathed in boiling-hot water, exposed to intense ultraviolet radiation and even (accidentally) crash-landed on the moon, all to test the limits of their impressive “tun” state — a survival mechanism wherein tardigrades curl up into shrunken, dehydrated balls and suspend their biological functions indefinitely in order to endure extreme environmental conditions.
Now, researchers have exposed tardigrades to the coldest temperatures and highest pressures that moss piglets have ever survived — not just to test the critters’ biological limits, but also to see whether a frozen tardigrade could be incorporated into two quantum entangled electric circuits, then later revived to its normal active state.
The results, reported in a new paper published to the preprint database arXiv, suggest that, yes — scientists may be able to add “temporary quantum entanglement” to the tardigrade’s growing list of accomplishments. However, early responses to the paper have taken issue with this finding.